PAGE 1/10

TITLE	DOC No. RFD-20240219007-001			
400G QSFP112 SR4 Transceiver	REVISION:	AUTHORIZED BY:		
	01	Andy Yang		
	DATE:	CLASSIFICATION:		
	2024.02.17	CONFIDENTIAL		

1.Descrition

400G-SR4 modules are designed and optimized for 400G Ethernet and Datacenter applications. They are compliant with IEEE 802.3bsand QSFP112MSA. The modules offer 4 independent transmit and receive channels, each is capable of 100Gb/s operation for an aggregate data rate of 400Gb/s over 100m of OM4/OM5multi-mode fiber. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8636

2.Features

- Single MPO12/APC receptacle
- 4 channels full-duplex transceiver module
- Single 3.3V power supply
- Maximum power consumption < 10W
- Link distance up to 100m over OM4/OM5
- 4 x 100Gb/s 850nm VCSEL-based transmitter
- · Built-in digital diagnostic functions
- I2C management interface
- Compliant to IEEE 802.3bs 400GAUI-4
- Compliant to IEEE 802.3cd 400GBASE-SR4
- Compliant to CMIS4.0
- · Compliant to RoHS

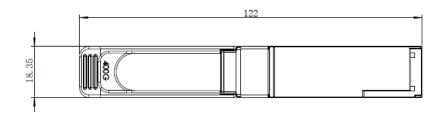
3.Application

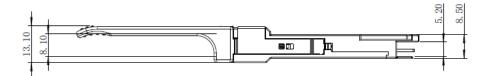
- Data Center
- 400G BASE-SR4 Ethernet

PAGE 2/10

TITLE	DOC No. RFD-20240219007-00		
400G QSFP112 SR4 Transceiver	REVISION:	AUTHORIZED BY:	
	01	Andy Yang	
	DATE:	CLASSIFICATION:	
	2024.02.17	CONFIDENTIAL	

4.Production Description

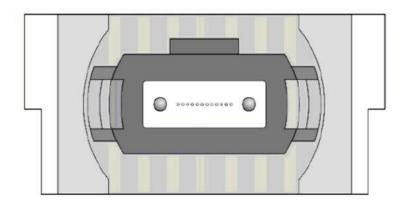

4.1 Product Name and Series Numbers


400G QSFP112 SR4 Transceiver

Data Rate	Wavelength (nm)	Distance	Fiber type	Power (dBm)	Sen. (dBm)	Connector	Temp.
400G	850	100m OM4/OM5	MMF	-4.6~4	-4.6	MPO-12	С

4.2 Dimension, Materials, Plating and Marking

See the package outline for details.


Mechanical Package Outline (All dimensions in mm)

PAGE 3/10

TITLE	DOC No. RFD-20240219007-00		
400G QSFP112 SR4 Transceiver	REVISION:	AUTHORIZED BY:	
	01	Andy Yang	
	DATE:	CLASSIFICATION:	
	2024.02.17	CONFIDENTIAL	

Optical Interface Lanes and Assignment

The optical interface port is a male MPO connector. The four fiber positions on the left as shown in below Figure, with the key up, are used for the optical transmit signals (Channel 1 through 4). The fiber positions on the right are used for the optical receive signals (Channel 4 through 1).

Transmit Channels: 1 2 3 4

Unused positions: x x x x

Receive Channels: 4 3 2 1

Management Interface

Digital diagnostics monitoring function is available on all 400G QSFP112 MMF modules. The 2-wire serial interface provides path to contact with module in user side. Memory space is arranged into alower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, such as Interrupt Flags and Monitors. Less time critical time entries, such as serial ID information and threshold settings, are available with the PageSelection function. The interface address A0h is mainly used for time critical data like interrupt handling inorder to enable a one-time-read for all data related to an interrupt situation. After an interrupt, then IntL has been asserted, the host can read out the flag field to determine the affected channel and type of flag

PAGE 4/10

TITLE	DOC No. RFD-20240219007-00		
400G QSFP112 SR4 Transceiver	REVISION:	AUTHORIZED BY:	
	01	Andy Yang	
	DATE:	CLASSIFICATION:	
	2024.02.17	CONFIDENTIAL	

5.Product Specification

5.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Note
Maximum Voltage Supply	V _{cc}	-0.3		3.6	V	
Storage Temperature	T _{st}	-20		85	°C	
Relative Humidity	RH	5		85	%	

5.2 Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Note
Power Supply Voltage (Vcc-GND)	V_{cc}	3.135	3.3	3.465	V	
Power Supply Current	I _{cc}			3000	mA	1
Operating Temperature (Case)	T_op	0		70	°C	
Power Consumption				10	W	
Transmission Distance	L1			100	m	OM4
Transmission Distance	L2			100	m	OM5
Data Rate	DR		53.125		GBd	

Notes:

1. Max. current at V_{cc} =3.3V.

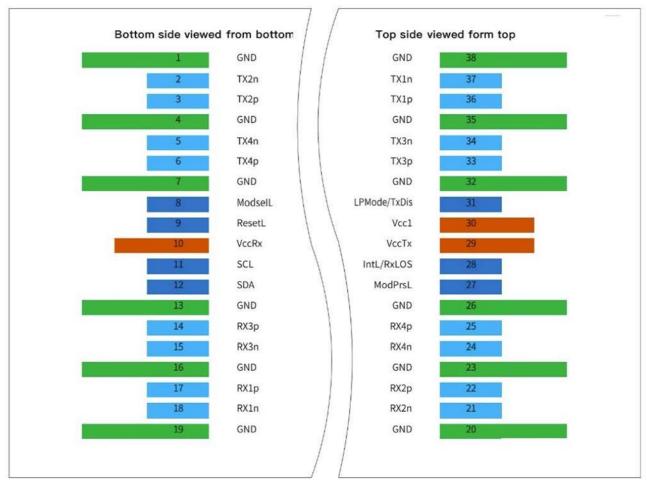
5.3 General Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Note
Transmitter						
Input Differential Impedance	Z _{in}	90	100	110	Ω	

PAGE 5/10

TITLE	DOC No. RFD-20240219007-00		
400G QSFP112 SR4 Transceiver	REVISION:	AUTHORIZED BY:	
	01	Andy Yang	
	DATE:	CLASSIFICATION:	
	2024.02.17	CONFIDENTIAL	

Input Amplitude	V _{in-pp}			880	mV	
Receiver						
Output Differential Impedance	Z _{out}	90	100	110	Ω	
Differential Data Output Swing	V _{out} -pp			900	mV	


5.4 General Optical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Note
	Transmi	tter				
Wavelength (range)	λ	844	850	863	nm	
RMS Spectral Width	SW _{RMS}			0.6	nm	
Optical Output Power	Po	-4.6		4.0	dBm	
Optical Modulation Amplitude (OMA)	P _{oma}	-2.6		3.5	dBm	
Laser Off Power	P _{off}			-30	dBm	
Extinction Ratio	ER	2.5			dB	
Transmitter and Dispersion						
Penalty Eye Closure for PAM4,	TDECQ			4.4	dB	
Each Lane Optical Return Loss Tolerance	T _{RL}			12	dB	
Optical Netari 2003 Tolerance	Receiv	er		12	u B	
Wavelength (range)	λ	842	850	948	nm	
Average Receive Power, per channel	P _{IN}	-6.4		4.0	dBm	
Receiver Sensitivity (OMA)	P _{sens}			-4.6	dBm	
Stressed Receiver Sensitivity (OMA),						
per Lane	SRS			-2	dBm	
Damage Threshold	P _{DT}	5.0			dBm	

PAGE 6/10

TITLE	DOC No. RFD-20240219007-001			
	REVISION:	AUTHORIZED BY:		
400G QSFP112 SR4 Transceiver	01	Andy Yang		
·	DATE:	CLASSIFICATION:		
	2024.02.17	CONFIDENTIAL		

6.Pin Assignments

QSFP Pad Function Definition

Electrical Pin Definition(QSFP)

Pin	Logic	Symbol	Description	Plug Sequence	Notes
1		GND	Ground	1	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3	

PAGE 7/10

TITLE	DOC No. RFD-20240219007-001		
	REVISION:	AUTHORIZED BY:	
400G QSFP112 SR4 Transceiver	01	Andy Yang	
	DATE:	CLASSIFICATION:	
	2024.02.17	CONFIDENTIAL	

4		GND	Ground	1	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3	
7		GND	Ground	1	1
8	LVTTL-I	ModselL	Module Select	3	
9	LVTTL-I	ResetL	Module Reset	3	
10		Vcc Rx	+3.3V Power Supply Receiver	2	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3	
12	LVCMOS-I/O	SDA	2-wire serial interface data	3	
13		GND	Ground	1	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3	
15	CML-O	Rx3n	Receiver Inverted Data Output	3	
16		GND	Ground	1	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3	
18	CML-O	Rx1n	Receiver Inverted Data Output	3	
19		GND	Ground	1	1
20		GND	Ground	1	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3	
23		GND	Ground	1	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3	
26		GND	Ground	1	1
27	LVTTL-O	ModPrsL	Module Present	3	
28	LVTTL-O	IntL/RxLOS	Interrupt/optional RxLOS	3	
29		Vcc Tx	+3.3V Power supply transmitter	2	2
30		Vcc1	+3.3V Power supply	2	2
31	LVTTL-I	LPMode/TxDis	Low Power Mode/optional TX Disable	3	
32		GND	Ground	1	1

PAGE 8/10

TITLE	DOC No. RFD-20240219007-001		
	REVISION:	AUTHORIZED BY:	
400G QSFP112 SR4 Transceiver	01	Andy Yang	
	DATE:	CLASSIFICATION:	
	2024.02.17	CONFIDENTIAL	

33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	3	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3	
35		GND	Ground	1	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3	
38		GND	Ground	1	1

Notes

- 1. GND is the symbol for signal and supply (power) common for the QSFP112 module. All are common within the QSFP112 module and all voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently.
 Requirements. Vcc Rx, Vcc1and Vcc Tx may be internally connected within the QSFP112 module in any combination.
 The connector pins are each rated for a maximum current of 1.5A.

ModSelL Pin

The ModSelL is an input pin. When held low by the host, the module responds to TWI serial communication commands. The ModSelL allows the use of multiple QSFP112 modules on a single TWI bus. When the ModSelL is "High", the module shall not respond to or acknowledge any TWI communication from the host. ModSelL signal input node must be biased to the "High" state in the module.

ResetL Pin

The ResetL pin must be pulled to Vcc in the QSFP112 module. A low level on the ResetL pin for longer than the minimum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t_init) the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL

PAGE 9/10

TITLE	DOC No. RFD-20240219007-001		
	REVISION:	AUTHORIZED BY:	
400G QSFP112 SR4 Transceiver	01	Andy Yang	
	DATE:	CLASSIFICATION:	
	2024.02.17	CONFIDENTIAL	

signal with the Data_Not_Ready bit negated. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

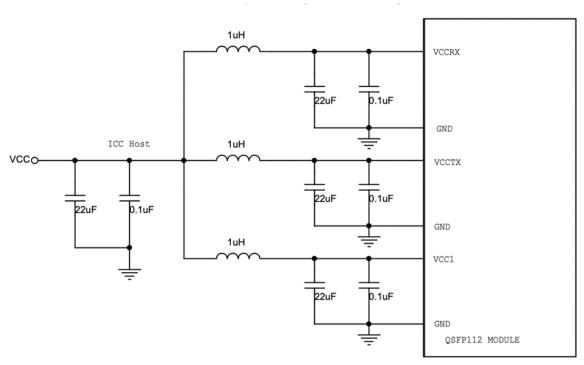
LPMode/TxDis Pin

LPMode/TxDis is a dual-mode input signal from the host operating with active high logic. It shall be pulled towards Vcc in the module. At power-up or after ResetL is deasserted LPMode/TxDis behaves as LPMode. If supported, LPMode/TxDis can be configured as TxDis using the TWI except during the execution of a reset.

ModPrsL Pin

ModPrsL is pulled up to Vcc_Host on the host board and grounded in the module. The ModPrsL is asserted "Low" when inserted and deasserted "High" when the module is physically absent from the host connector.

IntL/RxLOSL Pin


IntL/RxLOSL is a dual-mode active-low, open-collector output signal from the module. It shall be pulled up towards Vcc on the host board (see Table 4). At power-up or after ResetL is released to high, IntL/RxLOSL is configured as IntL. When the IntL signal is asserted Low it indicates a change in module state, a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt using the TWI serial interface. The IntL signal is deasserted "High" after all set interrupt flags are read. If dual mode operation supported, IntL/RxLOSL can be optionally programmed asRxLOSL using the TWI except during the execution of a reset. If the module has no interrupt flags asserted (IntL/RxLOSL is high), there should be no change in IntL/RxLOSL states after the mode change. If IntL/RxLOSL is configured as RxLOSL, a low indicates that there is a loss of received optical power on at least one lane. "high" indicates that there is no loss of received optical power. Timing requirements forIntL/RxLOSL including fast RxLOS

PAGE 10/10

TITLE	DOC No. RFD-20240219007-001		
	REVISION: AUTHORIZED		
400G QSFP112 SR4 Transceiver	01	Andy Yang	
	DATE:	CLASSIFICATION:	
	2024.02.17	CONFIDENTIAL	

mode are found in Table 15. The actual condition of loss of optical receive power is specified by other governing documents, as the alarm threshold level is application specific. The module shall pull RxLOSL to low if any lane in a multiple lane module or cable has a LOS condition and shall release RxLOSL to high only if no lane has a LOS condition.

Recommended Host Power Supply Filtering

7. Modification History

Rev.	Comments	Date	Originator	Approval
01	Preliminary Draft	2024/02/17	Andy Yang	Mike Sun